An intelligent framework for end?to?end rockfall detection
نویسندگان
چکیده
Rockfall detection is a crucial procedure in the field of geology, which helps to reduce associated risks. Currently, geologists identify rockfall events almost manually utilizing point cloud and imagery data obtained from different caption devices such as Terrestrial Laser Scanner (TLS) or digital cameras. Multitemporal comparison clouds with these techniques requires tedious visual inspection implies inaccuracies that depend on several factors human expertize sensibility sensors. This paper addresses this issue provides an intelligent framework for event any individual working intersection geology domain decision support systems. The development analysis presents major research challenges justifies exhaustive experimental analysis. In particular, we propose system utilizes multiple machine learning algorithms detect clusters data. Due extremely imbalanced nature problem, plethora state-of-the-art resampling accompanied by models feature selection procedures are being investigated. Various pipeline combinations have been examined benchmarked applying well-known metrics be incorporated into our system. Specifically, developed applied them analyze extracted TLS two distinct case studies, involving geological contexts: basaltic cliff Castellfollit de la Roca conglomerate Montserrat Massif, both located Spain. Our results indicate some above-mentioned pipelines can utilized incidents mountain walls, experimentally validated accuracy.
منابع مشابه
an investigation about the appropriate stochastic modeling framework for agricultural insurance pricing
با توجه به اینکه بیمه محصولات کشاورزی در ایران بیشتر جنبه ای حمایتی دارد و خسارات گزارش شده عموما بیش از حق بیمه های دریافت شده است، در این پایان نامه به جهت تعیین قیمت بیمه محصولات کشاورزی (گندم دیم) از فرآیندهای نوفه شلیک به عنوان مدلی مناسب استفاده شده است. بر اساس داده های صندوق بیمه کشاورزی از خسارات اعلام شده در سال زراعی 1388-1389 گندم دیم، در این پایان نامه حق بیمه خالص و ناخالص این محص...
islanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولÆminiumGPU: An Intelligent Framework for GPU Programming
As a consequence of the immense computational power available in GPUs, the usage of these platforms for running data-intensive general purpose programs has been increasing. Since memory and processor architectures of CPUs and GPUs are substantially different, programs designed for each platform are also very different and often resort to a very distinct set of algorithms and data structures. Se...
متن کاملAn Intelligent Recommendation Framework for ERP Systems
Enterprise Resource Planning systems efficiently administer all tasks concerning real-time planning and manufacturing, material procurement and inventory monitoring, customer and supplier management. Nevertheless, the incorporation of domain knowledge and the application of adaptive decision making into such systems require extreme customization with a cost that becomes unaffordable, especially...
متن کاملAn intelligent robotic framework for automated assembly
Rights ©2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Abstract Recent applications of robots for industrial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Intelligent Systems
سال: 2021
ISSN: ['1098-111X', '0884-8173']
DOI: https://doi.org/10.1002/int.22557